3.3V Zero-Delay Buffer

General Features

- Zero input output propagation delay, adjustable by capacitive load on FBK input.
- Zero input output propagation delay, adjustable by capacitive load on FBK input.
- Multiple configurations Refer "ASM5P2308A Configurations Table".
- Input frequency range: 10MHz to 133MHz
- Multiple low-skew outputs.
 - Output-output skew less than 200 ps.
 - Device-device skew less than 700 ps.
 - Two banks of four outputs, three-stateable by two select inputs.
- Less than 200 ps cycle-to-cycle jitter (-1, -1H, -4, -5H).
- Available in 16-pin SOIC and TSSOP packages.
- 3.3V operation.
- Advanced 0.35
 µ CMOS technology.
- Industrial temperature available.

Functional Description

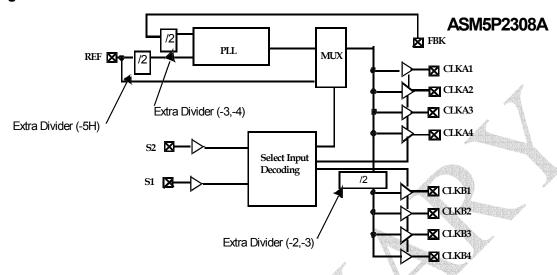
ASM5P2308A is a versatile, 3.3V zero-delay buffer designed to distribute high-speed clocks. It is available in a 16-pin package. The part has an on-chip PLL which locks to an input clock presented on the REF pin. The PLL feedback is required to be driven to FBK pin, and can be obtained from one of the outputs. The input-to-input propagation delay is guaranteed to be less than 350ps, and the output-to-output skew is guaranteed to be less than 250ps.

The ASM5P2308A has two banks of four outputs each,

which can be controlled by the select inputs as shown in the Select Input Decoding Table. If all the output clocks are not required, Bank B can be three-stated. The select input also allows the input clock to be directly applied to the outputs for chip and system testing purposes.

Multiple ASM5P2308A devices can accept the same input clock and distribute it. In this case the skew between the outputs of the two devices is guaranteed to be less than 700ps.

The ASM5P2308A is available in five different configurations (Refer "ASM5P2308A Configurations Table). The ASM5P2308A-1 is the base part, where the output frequencies equal the reference if there is no counter in the feedback path. The ASM5P2308A-1H is the high-drive version of the -1 and the rise and fall times on this device are much faster.


The ASM5P2308A-2 allows the user to obtain 2X and 1X frequencies on each output bank. The exact configuration and output frequencies depends on which output drives the feedback pin. The ASM5P2308A-3 allows the user to obtain 4X and 2X frequencies on the outputs.

The ASM5P2308A-4 enables the user to obtain 2X clocks on all outputs. Thus, the part is extremely versatile, and can be used in a variety of applications.

The ASM5P2308A-5H is a high-drive version with REF/2 on both banks.

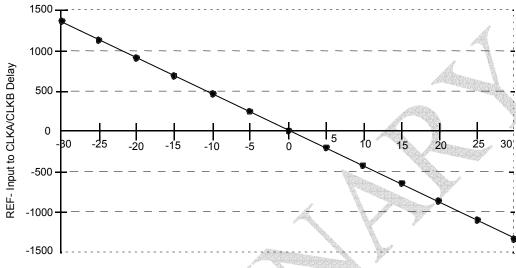
rev 1.1

Block Diagram

Select Input Decoding for ASM5P2308A

S2	S1	Clock A1 - A4	Clock B1 - B4	Output Source	PLL Shut-Down
0	0	Three-state	Three-state	PLL	Υ
0	1	Driven	Three-state	PLL	N
1	0	Driven ¹	Driven	Reference	Υ
1	1	Driven	Driven	PLL	N

ASM5P2308A Configurations

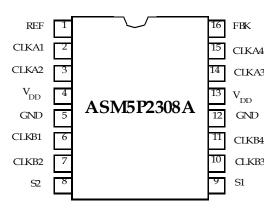

Device	Feedback From	Bank A Frequency	Bank B Frequency
ASM5P2308A-1	Bank A or Bank B	Reference	Reference
ASM5P2308A-1H	Bank A or Bank B	Reference	Reference
ASM5P2308A-2	Bank A	Reference	Reference /2
ASM5P2308A-2	Bank B	2 X Reference	Reference
ASM5P2308A-3	Bank A	2 X Reference	Reference or Reference ²
ASM5P2308A-3	Bank B	4 X Reference	2 X Reference
ASM5P2308A-4	Bank A or Bank B	2 X Reference	2 X Reference
ASM5P2308A-5H	Bank A or Bank B	Reference /2	Reference /2

Note

- 1. Outputs inverted on 2308-2 and 2308-3 in bypass mode, S2 = 1 and S1 = 0.
- 2. Output phase is indeterminant (0° or 180° from input clock). If phase integrity is required, use the ASM5P2308A-2.

Zero Delay and Skew Control

All outputs should be uniformly loaded to achieve Zero Delay between input and output.



Output Load Difference: FBK Load - CLKA/CLKB Load (pF)

To close the feedback loop of the ASM5P2308A, the FBK pin can be driven from any of the eight available output pins. The output driving the FBK pin will be driving a total load of 7 pF plus any additional load that it drives. The relative loading of this output (with respect to the remaining outputs) can adjust the input output delay. This is shown in the above graph.

For applications requiring zero input-output delay, all outputs including the one providing feedback should be equally loaded. If input-output delay adjustments are required, use the above graph to calculate loading differences between the feedback output and remaining outputs. For zero output-output skew, be sure to load outputs equally.

rev 1.1 Pin Configuration

Pin Description for ASM5P2308A

Pin#	Pin Name	Description
1	REF ³	Input reference frequency, 5V tolerant input
2	CLKA1⁴	Buffered clock output, bank A
3	CLKA2⁴	Buffered clock output, bank A
4	V_{DD}	3.3V supply
5	GND	Ground
6	CLKB1⁴	Buffered clock output, bank B
7	CLKB2 ⁴	Buffered clock output, bank B
8	S2 ⁵	Select input, bit 2
9	S1 ⁵	Select input, bit 1
10	CLKB3 ⁴	Buffered clock output, bank B
11	CLKB4 ⁴	Buffered clock output, bank B
12	GND	Ground
13	V_{DD}	3.3V supply
14	CLKA3 ⁴	Buffered clock output, bank A
15	CLKA4 4	Buffered clock output, bank A
16	FBK	PLL feedback input

Notes:

- 3. Weak pull-down.
- 4. Weak pull-down on all outputs.
- 5. Weak pull-up on these inputs.

Absolute Maximum Ratings

Parameter	Min	Max	Unit
Supply Voltage to Ground Potential	-0.5	+7.0	V
DC Input Voltage (Except REF)	-0.5	VDD + 0.5	V
DC Input Voltage (REF)	-0.5	7	V
Storage Temperature	-65	+150	°C
Max. Soldering Temperature (10 sec)		260	°C
Junction Temperature		150	°C
Static Discharge Voltage (per MIL-STD-883, Method 3015)		>2000	V

Note: These are stress ratings only and functional usage is not implied. Exposure to absolute maximum ratings for prolonged periods can affect device reliability.

Operating Conditions for ASM5P2308A Commercial Temperature Devices

Parameter	Description	Min	Max	Unit
V_{DD}	Supply Voltage	3.0	3.6	V
T_A	Operating Temperature (Ambient Temperature)	0	70	°C
C_L	Load Capacitance, below 100 MHz		30	pF
C_L	Load Capacitance, from 100 MHz to 133 MHz		10	pF
C _{IN}	Input Capacitance ⁶		7	pF

Note:

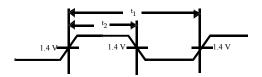
Electrical Characteristics for ASM5P2308A Commercial Temperature Devices

Parameter	Description	Test Conditions	Min	Max	Unit
V_{IL}	Input LOW Voltage			0.8	>
V_{IH}	Input HIGH Voltage		2.0		V
I _{IL}	Input LOW Current	$V_{IN} = 0V$		50.0	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$		100.0	μA
V _{OL}	Output LOW Voltage ⁷	I _{OL} = 8mA (-1, -2, -3, -4)		0.4	V
A STATE OF THE STA		I _{OH} = 12mA (-1H, -5H)			
V _{OH}	Output HIGH Voltage ⁷	I _{OL} = -8mA (-1, -2, -3, -4)	2.4		V
	<i>I</i>	I _{OH} = -12mA (-1H, -5H)			
	State Control of the	Unloaded outputs 100MHz REF		TBD	
	Cumply Current	Select inputs at V _{DD} or GND		TBD	m 1
I _{DD}	Supply Current	Unloaded outputs, 66MHz REF (-1, -2, -3, -4)		TBD	mA
		Unloaded outputs, 33MHz REF (-1, -2, -3, -4)		TBD	

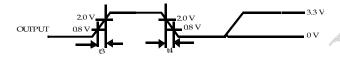
Note:

^{6.} Applies to both Ref Clock and FBK.

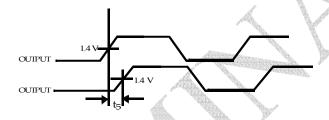
^{7.} Parameter is guaranteed by design and characterization. Not 100% tested in production.

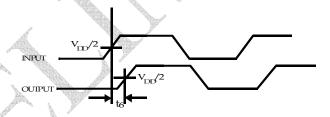

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
t_1	Output Frequency	30-pF load, All devices	10		100	MHz
t_1	Output Frequency	20-pF load, -1H, -5H devices ⁸	10		133.3	MHz
t_1	Output Frequency	15-pF load, -1, -2, -3, -4 devices	10		133.3	MHz
	Duty Cycle 7 = (t_2/t_1) * 100 (-1, -2, -3, -4, -1H, -5H)	Measured at 1.4V, F _{OUT} = <66.66 MHz 30-pF load	40.0	50.0	60.0	%
	Duty Cycle 7 = $(t_2/t_1) * 100$ (-1, -2, -3, -4, -1H, -5H)	Measured at 1.4V, F _{OUT} = <50 MHz 15-pF load	45.0	50.0	55.0	%
t ₃	Output Rise Time ⁷ (-1, -2, -3, -4)	Measured between 0.8V and 2.0V 30-pF load			2.20	ns
t ₃	Output Rise Time ⁷ (-1, -2, -3, -4)	Measured between 0.8V and 2.0V 15-pF load			1.50	ns
t ₃	Output Rise Time ⁷ (-1H, -5H)	Measured between 0.8V and 2.0V 30-pF load			1.50	ns
t ₄	Output Fall Time ⁷ (-1, -2, -3, -4)	Measured between 2.0V and 0.8V 30-pF load			2.20	ns
t ₄	Output Fall Time ⁷ (-1, -2, -3, -4)	Measured between 0.8V and 2.0V 15-pF load			1.50	ns
t ₄	Output Fall Time ⁷ (-1H, -5H)	Measured between 2.0V and 0.8V 30-pF load			1.25	ns
	Output-to-output skew on same bank (-1, -2, -3, -4) ⁷	All outputs equally loaded			200	ps
	Output-to-output skew (-1H, -5H)	All outputs equally loaded			200	
t ₅	Output bank A -to- output bank B skew (-1, -4, -5H)	All outputs equally loaded			200	
	Output bank A -to- output bank B skew (-2, -3)	All outputs equally loaded			400	
t ₆	Delay, REF Rising Edge to FBK Rising Edge ⁶	Measured at V _{DD} /2		0	±250	ps
t ₇	Device-to-Device Skew ⁷	Measured at V _{DD} /2 on the FBK pins of the device		0	700	ps
	Coal to make "War 7	Measured at 66.67 MHz, loaded outputs, 15 pF load			200	ps
t,	Cycle-to-cycle jitter ⁷ (-1, -1H, -4, -5H)	Measured at 66.67 MHz, loaded outputs, 30 pF load			200	
	(-1, -111, -4, -511)	Measured at 133.3 MHz, loaded outputs, 15 pF load			100	
	Cycle-to-cycle jitter ⁷	Measured at 66.67 MHz, loaded outputs, 30pF load			400	ps
t,	(-2, -3)	Measured at 66.67 MHz, loaded outputs, 15 pF load			400	
t _{LOCK}	PLL Lock Time ⁷	Stable power supply, valid clock presented on REF and FBK pins			1.0	ms

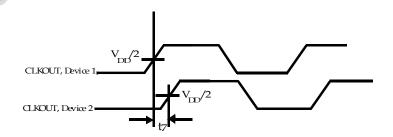
rev 1.1
Switching Characteristics for ASM5I2308A - Industrial Temperature Devices


Parameter	Description	Test Conditions	Min	Тур	Max	Unit
t ₁	Output Frequency	30-pF load, All devices	10		100	MHz
t ₁	Output Frequency	20-pF load, -1H, -5H devices ⁸	10		133.3	MHz
t_1	Output Frequency	15-pF load, -1, -2, -3, -4 devices	10	40	133.3	MHz
	Duty Cycle $^{7} = (t_2/t_1) * 100$	Measured at 1.4V, F _{OUT} = <66.66 MHz 30-pF load	40.0	50.0	60.0	%
	(-1, -2, -3, -4, -1H, -5H)					
	Duty Cycle 7 = $(t_2/t_1) * 100$	Measured at 1.4V, F _{OUT} = <50 MHz 15-pF load	45.0	50.0	55.0	%
	(-1, -2, -3, -4, -1H, -5H)	- PE				
t_3	Output Rise Time 7	Measured between 0.8V and 2.0V 30-pF load			2.50	ns
	(-1, -2, -3, -4)	A		- 18 P		
t_3	Output Rise Time 7	Measured between 0.8V and 2.0V 15-pF load			1.50	ns
	(-1, -2, -3, -4)					
t ₃	Output Rise Time 7	Measured between 0.8V and 2.0V 30-pF load	A STATE OF THE STA		1.50	ns
	(-1H, -5H)					
$t_{\scriptscriptstyle{4}}$	Output Fall Time ⁷	Measured between 2.0V and 0.8V 30-pF load			2.50	ns
	(-1, -2, -3, -4)					
t ₄	Output Fall Time ⁷	Measured between 0.8V and 2.0V 15-pF load			1.50	ns
	(-1, -2, -3, -4)					
$t_{\scriptscriptstyle{4}}$	Output Fall Time ⁷	Measured between 2.0V and 0.8V 30-pF load			1.25	ns
	(-1H, -5H)					
	Output-to-output skew on same bank	All outputs equally loaded			200	ps
	(-1, -2, -3, -4) ⁷					
	Output-to-output skew	All outputs equally loaded			200	
$t_{\scriptscriptstyle{5}}$	(-1H, -5H)	OU state to severally leaded			200	
	Output bank A -to- output bank B	All outputs equally loaded			200	
	skew (-1, -4, -5H) Output bank A -to- output bank B	All outputs equally loaded			400	
	skew (-2, -3)	All outputs equally loaded			400	
t ₆	Delay, REF Rising Edge to FBK	Measured at V _{DD} /2		0	±250	ps
*0	Rising Edge ⁷					P-0
t ₇	Device-to-Device Skew ⁷	Measured at V _{DD} /2 on the FBK pins of the device		0	700	ps
		Measured at 66.67 MHz, loaded outputs,			200	ps
	-	15 pF load				
t_{i}	Cycle-to-cycle jitter ⁷	Measured at 66.67 MHz, loaded outputs,			200	
	(-1, -1H, -4, -5H)	30 pF load		<u> </u>		
		Measured at 133.3 MHz, loaded outputs, 15 pF load			100	
t₁	Cycle-to-cycle jitter ⁷	Measured at 66.67 MHz, loaded outputs, 30pF load			400	ps
	(-2, -3)	Measured at 66.67 MHz, loaded outputs, 15 pF load			400	
t _{LOCK}	PLL Lock Time ⁷	Stable power supply, valid clock presented on REF			1.0	ms
LOOK		and FBK pins				

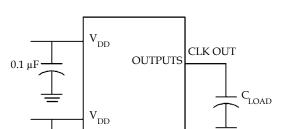
Switching Waveforms


Duty Cycle Timing


All Outputs Rise/Fall Time

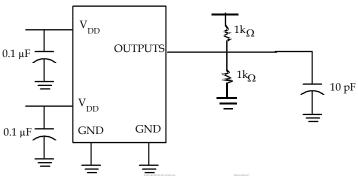

Output - Output Skew

Input - Output Propagation Delay



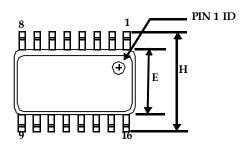
Device - Device Skew

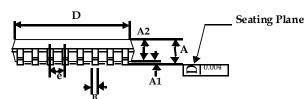
Test Circuits

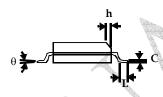

Test Circuit #1

GND

GND

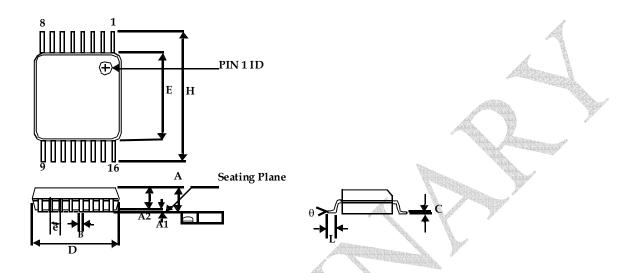

Test Circuit #2




For parameter t_8 (output slew rate) on -1H devices

3.3V Zero Delay Buffer

Package Information: 16-lead (150 Mil) Molded SOIC



	Dimension	ns (inches)	Dimensions (millimeters)		
Symbol	MIN	MAX	MIN	MAX	
Α	0.061	0.068	1.55	1.73	
A1	0.004	0.0098	0.102	0.249	
A2	0.055	0.061	1.40	1.55	
В	0.013	0.019	0.33	0.49	
С	0.0075	0.0098	0.191	0.249	
D	0.386	0.393	9.80	9.98	
E	0.150	0.157	3.81	3.99	
e	0.050 BSC		1.27	BSC	
Н	0.230	0.244	5.84	6.20	
h	0.010	0.016	0.25	0.41	
L	0.016	0.035	0.41	0.89	
θ	0°	8°	0°	8°	

Package Information: 16-lead Thin Shrunk Small Outline Package (4.40-MM Body)

Symbol	Dimensions (inches)		Dimensio	ons (mm)
	MIN	MAX	MIN	MAX
Α		0.043		1.10
A1	0.002	0.006	0.05	0.15
A2	0.003	0.37	0.85	0.95
В	0.007	0.012	0.19	0.30
С	0.004	0.008	0.09	0.20
D A	0.193	2.008	4.90	5.10
E	0.169	0.177	4.30	4.50
е	0.026	BSC	0.65	BSC
Н	0.246	0.256	6.25	6.50
L	0.020	0.028	0.50	0.70
θ	0°	8°	0°	8°

Ordering Codes

Ordering Code	Package Type	Operating Range
ASM5P2308A-1-16-ST	16-pin 150-mil SOIC-TUBE	Commercial
ASM5I2308A-1-16-ST	16-pin 150-mil SOIC- TUBE	Industrial
ASM5P2308A-1-16-SR	16-pin 150-mil SOIC-TAPE & REEL	Commercial
ASM5I2308A-1-16-SR	16-pin 150-mil SOIC-TAPE & REEL	Industrial
ASM5P2308A-1-16-TT	16-PIN 150-mil TSSOP - TUBE	Commercial
ASM5I2308A-1-16-TT	16-PIN 150-mil TSSOP - TUBE	Industrial
ASM5P2308A-1-16-TR	16-PIN 150-mil TSSOP - TAPE & REEL	Commercial
ASM5I2308A-1-16-TR	16-PIN 150-mil TSSOP - TAPE & REEL	Industrial
ASM5P2308A-1H-16-ST	16-pin 150-mil SOIC-TUBE	Commercial
ASM5I2308A-1H-16-ST	16-pin 150-mil SOIC- TUBE	Industrial
ASM5P2308A-1H-16-SR	16-pin 150-mil SOIC-TAPE & REEL	Commercial
ASM5I2308A-1H-16-SR	16-pin 150-mil SOIC-TAPE & REEL	Industrial
ASM5P2308A-1H-16-TT	16-PIN 150-mil TSSOP - TUBE	Commercial
ASM5I2308A-1H-16-TT	16-PIN 150-mil TSSOP - TUBE	Industrial
ASM5P2308A-1H-16-TR	16-PIN 150-mil TSSOP - TAPE & REEL	Commercial
ASM5I2308A-1H-16-TR	16-PIN 150-mil TSSOP - TAPE & REEL	Industrial
ASM5P2308A-2-16-ST	16-pin 150-mil SOIC-TUBE	Commercial
ASM5I2308A-2-16-ST	16-pin 150-mil SOIC- TUBE	Industrial
ASM5P2308A-2-16-SR	16-pin 150-mil SOIC-TAPE & REEL	Commercial
ASM5I2308A-2-16-SR	16-pin 150-mil SOIC-TAPE & REEL	Industrial
ASM5P2308A-2-16-TT	16-PIN 150-mil TSSOP - TUBE	Commercial
ASM5I2308A-2-16-TT	16-PIN 150-mil TSSOP - TUBE	Industrial
ASM5P2308A-2-16-TR	16-PIN 150-mil TSSOP - TAPE & REEL	Commercial
ASM5I2308A-2-16-TR	16-PIN 150-mil TSSOP - TAPE & REEL	Industrial
ASM5P2308A-3-16-ST	16-pin 150-mil SOIC-TUBE	Commercial
ASM5I2308A-3-16-ST	16-pin 150-mil SOIC- TUBE	Industrial
ASM5P2308A-3-16-SR	16-pin 150-mil SOIC-TAPE & REEL	Commercial
ASM5I2308A-3-16-SR	16-pin 150-mil SOIC-TAPE & REEL	Industrial
ASM5P2308A-3-16-TT	16-PIN 150-mil TSSOP - TUBE	Commercial
ASM5I2308A-3-16-TT	16-PIN 150-mil TSSOP - TUBE	Industrial
ASM5P2308A-3-16-TR	16-PIN 150-mil TSSOP - TAPE & REEL	Commercial
ASM5I2308A-3-16-TR	16-PIN 150-mil TSSOP - TAPE & REEL	Industrial

Ordering Codes (contd)

Ordering Code	Package Type	Operating Range
ASM5P2308A-4-16-ST	16-pin 150-mil SOIC-TUBE	Commercial
ASM5I2308A-4-16-ST	16-pin 150-mil SOIC- TUBE	Industrial
ASM5P2308A-4-16-SR	16-pin 150-mil SOIC-TAPE & REEL	Commercial
ASM5I2308A-4-16-SR	16-pin 150-mil SOIC-TAPE & REEL	Industrial
ASM5P2308A-4-16-TT	16-PIN 150-mil TSSOP - TUBE	Commercial
ASM5I2308A-4-16-TT	16-PIN 150-mil TSSOP - TUBE	Industrial
ASM5P2308A-4-16-TR	16-PIN 150-mil TSSOP - TAPE & REEL	Commercial
ASM5I2308A-4-16-TR	16-PIN 150-mil TSSOP - TAPE & REEL	Industrial
ASM5P2308A-5H-16-ST	16-pin 150-mil SOIC-TUBE	Commercial
ASM5I2308A-5H-16-ST	16-pin 150-mil SOIC- TUBE	Industrial
ASM5P2308A-5H-16-SR	16-pin 150-mil SOIC-TAPE & REEL	Commercial
ASM5I2308A-5H-16-SR	16-pin 150-mil SOIC-TAPE & REEL	Industrial
ASM5P2308A-5H-16-TT	16-PIN 150-mil TSSOP - TUBE	Commercial
ASM5I2308A-5H-16-TT	16-PIN 150-mil TSSOP - TUBE	Industrial
ASM5P2308A-5H-16-TR	16-PIN 150-mil TSSOP - TAPE & REEL	Commercial
ASM5I2308A-5H-16-TR	16-PIN 150-mil TSSOP - TAPE & REEL	Industrial

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

November 2003 ASM5P2308A

rev 1.1

Alliance Semiconductor Corporation 2575, Augustine Drive, Santa Clara, CA 95054 Tel# 408-855-4900

Fax: 408-855-4999 www.alsc.com Copyright © Alliance Semiconductor All Rights Reserved Preliminary Information Part Number: ASM5P2308A Document Version: v1.1

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to Dan Hariton / Alliance Semiconductor, dated 11-11-2003

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems